Anion uniport in plant mitochondria is mediated by a Mg(2+)-insensitive inner membrane anion channel.
نویسندگان
چکیده
It has long been established that the inner membrane of plant mitochondria is permeable to Cl-. Evidence has also accumulated which suggests that a number of other anions such as Pi and dicarboxylates can also be transported electrophoretically. In this paper, we present evidence that anion uniport in plant mitochondria is mediated via a pH-regulated channel related to the so-called inner membrane anion channel (IMAC) of animal mitochondria. Like IMAC, the channel in potato mitochondria transports a wide variety of anions including NO3-, Cl-, ferrocyanide, 1,2,3-benzene-tricarboxylate, malonate, Pi, alpha-ketoglutarate, malate, adipate, and glucuronate. In the presence of nigericin, anion uniport is sensitive to the medium pH (pIC50 = 7.60, Hill coefficient = 2). In the absence of nigericin, transport rates are much lower and much less sensitive to pH, suggesting that matrix H+ inhibit anion uniport. This conclusion is supported by measurements of H+ flux which reveal that "activation" of anion transport at high pH by nigericin and at low pH by respiration is associated with an efflux of matrix H+. Other inhibitors of IMAC which are found to block anion uniport in potato mitochondria include propranolol (IC50 = 14 microM, Hill coefficient = 1.28), tributyltin (IC50 = 4 nmol/mg, Hill coefficient = 2.0), and the nucleotide analogs Erythrosin B and Cibacron Blue 3GA. The channel in plant mitochondria differs from IMAC in that it is not inhibited by matrix Mg2+, mercurials, or N,N'-dicyclohexylcarbodiimide. The lack of inhibition by Mg2+ suggests that the physiological regulation of the plant channel may differ from IMAC and that the plant IMAC may have functions such as a role in the malate/oxaloacetate shuttle in addition to its proposed role in volume homeostasis.
منابع مشابه
The mitochondrial inner membrane anion channel. Regulation by divalent cations and protons.
It is now well established that incubation of mitochondria at pH 8 or higher opens up an electrophoretic anion transport pathway in the inner membrane. It is not known, however, whether this transport process has any physiological relevance. In this communication we demonstrate that anion uniport can take place at physiological pH if the mitochondria are depleted of matrix divalent cations with...
متن کاملTriorganotins inhibit the mitochondrial inner membrane anion channel.
The inner membrane of liver and heart mitochondria possesses an anion uniport pathway, known as the inner membrane anion channel (IMAC). IMAC is inhibited by matrix Mg2+, matrix H+, N,N'-dicyclohexycarbodiimide, mercurials and amphiphilic amines such as propranolol. Most of these agents react with a number of different mitochondrial proteins and, therefore, more selective inhibitors have been s...
متن کاملCharacterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane
Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...
متن کاملSuperoxide Anion, Uncoupling Proteins and Alzheimer’s Disease
Superoxide anion is the first generated reactive oxygen species (ROS) after oxygen enters living cells. It was once considered to be highly deleterious to cell functions and aging. Therefore, antioxidants were suggested to prevent aging and degenerative diseases. However, superoxide signaling has been shown in many physiological responses such as transcriptional regulation, protein activation, ...
متن کاملCalcium ion activation of the anion-conducting channel in the rat liver mitochondrial inner membrane.
Stimulation of the rat liver mitochondrial inner-membrane anion-conducting channel by aeration is dependent on the concentration of Ca2+ ions in the assay medium. Ca2+ activates anion conduction in both aerated and non-energised mitochondria but acts over a wider concentration range and produces a greater increase in anion-conductivity in aerated mitochondria. EGTA reverses Ca2+ stimulation but...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 267 5 شماره
صفحات -
تاریخ انتشار 1992